Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Insect Sci ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556782

RESUMO

The vast majority of all global species have circadian rhythm cycles that allow them to adapt to natural environments. These regular rhythms are regulated by core clock genes and recent studies have also implicated roles for microRNAs in this regulation. Oviposition is an important circadian behavior in the reproductive cycle of insect vectors of diseases, and little is known about the rhythm or its regulation in mosquitoes. Aedes albopictus is a diurnal mosquito that transmits arboviruses and is the major cause of outbreaks of dengue fever in China. We analyzed the oviposition rhythm patterns of A. albopictus under different light/dark conditions and show that the mosquitoes have an oviposition peak between zeitgeber time 9 (ZT 9) and ZT 12. Furthermore, the antagomir-mediated knockdown of expression of the microRNA miR-2940-1 affected the oviposition rhythm of A. albopictus. These data support the conclusion that miR-2940-1 is involved in the regulation of oviposition rhythm in A. albopictus and provide a foundation for using oviposition rhythms as a new target for vector mosquito control.

2.
Front Bioeng Biotechnol ; 11: 1261123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965050

RESUMO

The field-testing and eventual adoption of genetically-engineered mosquitoes (GEMs) to control vector-borne pathogen transmission will require them meeting safety criteria specified by regulatory authorities in regions where the technology is being considered for use and other locales that might be impacted. Preliminary risk considerations by researchers and developers may be useful for planning the baseline data collection and field research used to address the anticipated safety concerns. Part of this process is to identify potential hazards (defined as the inherent ability of an entity to cause harm) and their harms, and then chart the pathways to harm and evaluate their probability as part of a risk assessment. The University of California Malaria Initiative (UCMI) participated in a series of workshops held to identify potential hazards specific to mosquito population modification strains carrying gene-drive systems coupled to anti-parasite effector genes and their use in a hypothetical island field trial. The hazards identified were placed within the broader context of previous efforts discussed in the scientific literature. Five risk areas were considered i) pathogens, infections and diseases, and the impacts of GEMs on human and animal health, ii) invasiveness and persistence of GEMs, and interactions of GEMs with target organisms, iii) interactions of GEMs with non-target organisms including horizontal gene transfer, iv) impacts of techniques used for the management of GEMs and v) evolutionary and stability considerations. A preliminary hazards list (PHL) was developed and is made available here. This PHL is useful for internal project risk evaluation and is available to regulators at prospective field sites. UCMI project scientists affirm that the subsequent processes associated with the comprehensive risk assessment for the application of this technology should be driven by the stakeholders at the proposed field site and areas that could be affected by this intervention strategy.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37816603

RESUMO

Transposon-mediated transgenesis has revolutionized both basic and applied studies of mosquito vectors of disease. Currently, techniques such as enhancer traps and transposon tagging, which rely on remobilizable insertional mutagenesis, are only possible with transposon-based vector systems. Here, we provide general descriptions of methods and applications of transposon-based mosquito transgenesis. The exact procedures must be adapted to each mosquito species and comparisons of some differences among different mosquito species are outlined. A number of excellent publications showing detailed and specific protocols and methods are featured and referenced.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37816607

RESUMO

Transposon-mediated transgenesis of mosquito vectors of disease pathogens followed the early success of transgenesis in the vinegar fly, Drosophila melanogaster The P transposable element used in Drosophila does not function canonically in mosquitoes, and repeatable, routine transgenesis in mosquitoes was not accomplished until new transposable elements were discovered and validated. A number of distinct transposons were subsequently identified that mediate the introduction of exogenous DNA in a stable and heritable manner in mosquito species, including members of the genera Aedes, Anopheles, and Culex The most versatile element, piggyBac, is functional in all of these mosquito genera, as well as in many other insects in diverse orders, and has been used extensively outside the class. Transposon-mediated transgenesis of recessive and dominant marker genes and reporter systems has been used to define functional fragments of gene control sequences, introduce exogenous DNA encoding products beneficial to medical interests, and act as "enhancer traps" to identify endogenous genes with specific expression characteristics.

5.
BMC Biol ; 21(1): 194, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704988

RESUMO

BACKGROUND: Worldwide invasion and expansion of Aedes albopictus, an important vector of dengue, chikungunya, and Zika viruses, has become a serious concern in global public health. Chemical insecticides are the primary means currently available to control the mosquito populations. However, long-term and large-scale use of insecticides has selected for resistance in the mosquito that is accompanied by a genetic load that impacts fitness. RESULTS: A number of laboratory strains representing different resistance mechanisms were isolated and identified from laboratory-derived, deltamethrin-resistant Ae. albopictus recovered in previous work. Resistance levels and fitness costs of the strains were evaluated and compared to characterize the evolution of the resistance genotypes and phenotypes. The heterozygous F1534S mutation (1534F/S) in the voltage gated sodium channel (vgsc) gene product (VGSC), first detected in early stages of resistance evolution, not only confers high-level resistance, but also produces no significant fitness costs, leading to the rapid spread of resistance in the population. This is followed by the increase in frequency of homozygous F1534S (1534S/S) mosquitoes that have significant fitness disadvantages, prompting the emergence of an unlinked I1532T mutation with fewer side effects and a mating advantage better adapted to the selection and reproductive pressures imposed in the experiments. Metabolic resistance with no significant fitness cost and mediating a high-tolerance resistance phenotype may play a dominant role in the subsequent evolution of resistance. The different resistant strains had similar vector competence for dengue virus type-2 (DENV-2). Furthermore, a comparative analysis of vectorial capacity revealed that increased survival due to deltamethrin resistance balanced the negative fitness cost effects and contributed to the risk of dengue virus (DENV) transmission by resistant populations. The progressive evolution of resistance results in mosquitoes with both target-site insensitivity and metabolic resistance with lower fitness costs, which further leads to resistant populations with both high resistance levels and vectorial capacity. CONCLUSIONS: This study reveals a possible mechanism for the evolution of deltamethrin resistance in Aedes albopictus. These findings will help guide practical strategies for insecticide use, resistance management and the prevention and control of mosquito-borne disease.


Assuntos
Aedes , Vírus da Dengue , Inseticidas , Infecção por Zika virus , Zika virus , Animais , Aedes/genética , Vírus da Dengue/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética
6.
Proc Natl Acad Sci U S A ; 120(33): e2306322120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549256

RESUMO

Plants produce various pigments that not only appear as attractive colors but also provide valuable resources in applications in daily life and scientific research. Biosynthesis pathways for these natural plant pigments are well studied, and most have multiple enzymes that vary among plant species. However, adapting these pathways to animals remains a challenge. Here, we describe successful biosynthesis of betalains, water-soluble pigments found only in a single plant order, Caryophyllales, in transgenic silkworms by coexpressing three betalain synthesis genes, cytochrome P450 enzyme CYP76AD1, DOPA 4,5-dioxygenase, and betanidin 5-O-glucosyltransferase. Betalains can be synthesized in various tissues under the control of the ubiquitous IE1 promoter but accumulate mainly in the hemolymph with yields as high as 274 µg/ml. Additionally, transformed larvae and pupae show a strong red color easily distinguishable from wild-type animals. In experiments in which expression is controlled by the promoter of silk gland-specific gene, fibroin heavy-chain, betalains are found predominantly in the silk glands and can be secreted into cocoons through spinning. Betalains in transformed cocoons are easily recovered from cocoon shells in water with average yields reaching 14.4 µg/mg. These data provide evidence that insects can synthesize natural plant pigments through a complex, multiple enzyme-mediated synthesis pathway. Such pigments also can serve as dominant visible markers in insect transgenesis applications. This study provides an approach to producing valuable plant-derived compounds by using genetically engineered silkworms as a bioreactor.


Assuntos
Bombyx , Engenharia Genética , Animais Geneticamente Modificados , Animais , Pigmentos Biológicos/biossíntese , Betalaínas/biossíntese , Betalaínas/química , Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Cor
7.
Proc Natl Acad Sci U S A ; 120(29): e2221118120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428915

RESUMO

Proposed genetic approaches for reducing human malaria include population modification, which introduces genes into vector mosquitoes to reduce or prevent parasite transmission. We demonstrate the potential of Cas9/guide RNA (gRNA)-based gene-drive systems linked to dual antiparasite effector genes to spread rapidly through mosquito populations. Two strains have an autonomous gene-drive system coupled to dual anti-Plasmodium falciparum effector genes comprising single-chain variable fragment monoclonal antibodies targeting parasite ookinetes and sporozoites in the African malaria mosquitoes Anopheles gambiae (AgTP13) and Anopheles coluzzii (AcTP13). The gene-drive systems achieved full introduction within 3 to 6 mo after release in small cage trials. Life-table analyses revealed no fitness loads affecting AcTP13 gene-drive dynamics but AgTP13 males were less competitive than wild types. The effector molecules reduced significantly both parasite prevalence and infection intensities. These data supported transmission modeling of conceptual field releases in an island setting that shows meaningful epidemiological impacts at different sporozoite threshold levels (2.5 to 10 k) for human infection by reducing malaria incidence in optimal simulations by 50 to 90% within as few as 1 to 2 mo after a series of releases, and by ≥90% within 3 mo. Modeling outcomes for low sporozoite thresholds are sensitive to gene-drive system fitness loads, gametocytemia infection intensities during parasite challenges, and the formation of potentially drive-resistant genome target sites, extending the predicted times to achieve reduced incidence. TP13-based strains could be effective for malaria control strategies following validation of sporozoite transmission threshold numbers and testing field-derived parasite strains. These or similar strains are viable candidates for future field trials in a malaria-endemic region.


Assuntos
Anopheles , Malária Falciparum , Malária , Animais , Masculino , Humanos , Anopheles/genética , Anopheles/parasitologia , Mosquitos Vetores/genética , Malária/prevenção & controle , Plasmodium falciparum/genética , Esporozoítos , Malária Falciparum/parasitologia
8.
Sci Rep ; 13(1): 5958, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045866

RESUMO

Dengue viruses (DENVs) are mosquito-borne flaviviruses causing millions of human infections each year and pose a challenge for public health systems worldwide. Aedes aegypti is the principal vector species transmitting DENVs to humans. Controlling Ae. aegypti is difficult due to the abundance of breeding sites and increasing insecticide resistance in the vector populations. Developing new vector control strategies is critical for decreasing the disease burden. One potential approach is genetically replacing Ae. aegypti populations with vector populations highly resistant to DENV transmission. Here, we focus on an alternative strategy for generating dengue 2 virus (DENV-2) resistance in genetically-modified Ae. aegypti in which the mosquitoes express an inactive form of Michelob_x (Mx), an antagonist of the Inhibitor of Apoptosis (IAP), to induce apoptosis in those cells in which actively replicating DENV-2 is present. The inactive form of Mx was flanked by the RRRRSAG cleavage motif, which was recognized by the NS2B/NS3 protease of the infecting DENV-2 thereby releasing and activating Mx which then induced apoptosis. Our transgenic strain exhibited a significantly higher mortality rate than the non-transgenic control when infected with DENV-2. We also transfected a DNA construct containing inactive Mx fused to eGFP into C6/36 mosquito cells and indirectly observed Mx activation on days 3 and 6 post-DENV-2 infections. There were clear signs that the viral NS2B/NS3 protease cleaved the transgene, thereby releasing Mx protein into the cytoplasm, as was confirmed by the detection of eGFP expression in infected cells. The present study represents proof of the concept that virus infection can be used to induce apoptosis in infected mosquito cells.


Assuntos
Aedes , Vírus da Dengue , Dengue , Animais , Humanos , Vírus da Dengue/genética , Morte Celular , Transgenes , Peptídeo Hidrolases/genética
9.
Nat Commun ; 14(1): 2292, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085529

RESUMO

The initial signals governing sex determination vary widely among insects. Here we show that Armigeres subalbatus M factor (AsuMf), a male-specific duplication of an autosomal gene of the Drosophila behaviour/human splicing (DBHS) gene family, is the potential primary signal for sex determination in the human filariasis vector mosquito, Ar. subalbatus. Our results show that AsuMf satisfies two fundamental requirements of an M factor: male-specific expression and early embryonic expression. Ablations of AsuMf result in a shift from male- to female-specific splicing of doublesex and fruitless, leading to feminization of males both in morphology and general transcription profile. These data support the conclusion that AsuMf is essential for male development in Ar. subalbatus and reveal a male-determining factor that is derived from duplication and subsequent neofunctionalization of a member of the conserved DBHS family.


Assuntos
Culicidae , Filariose , Animais , Feminino , Humanos , Masculino , Culicidae/genética , Drosophila , Família , Mosquitos Vetores/genética , Diferenciação Sexual
10.
Front Cell Infect Microbiol ; 13: 1132647, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37009496

RESUMO

Plasmodium ookinetes use an invasive apparatus to invade mosquito midguts, and tubulins are the major structural proteins of this apical complex. We examined the role of tubulins in malaria transmission to mosquitoes. Our results demonstrate that the rabbit polyclonal antibodies (pAb) against human α-tubulin significantly reduced the number of P. falciparum oocysts in Anopheles gambiae midguts, while rabbit pAb against human ß-tubulin did not. Further studies showed that pAb, specifically against P. falciparum α-tubulin-1, also significantly limited P. falciparum transmission to mosquitoes. We also generated mouse monoclonal antibodies (mAb) using recombinant P. falciparum α-tubulin-1. Out of 16 mAb, two mAb, A3 and A16, blocked P. falciparum transmission with EC50 of 12 µg/ml and 2.8 µg/ml. The epitopes of A3 and A16 were determined to be a conformational and linear sequence of EAREDLAALEKDYEE, respectively. To understand the mechanism of the antibody-blocking activity, we studied the accessibility of live ookinete α-tubulin-1 to antibodies and its interaction with mosquito midgut proteins. Immunofluorescent assays showed that pAb could bind to the apical complex of live ookinetes. Moreover, both ELISA and pull-down assays demonstrated that insect cell-expressed mosquito midgut protein, fibrinogen-related protein 1 (FREP1), interacts with P. falciparum α-tubulin-1. Since ookinete invasion is directional, we conclude that the interaction between Anopheles FREP1 protein and Plasmodium α-tubulin-1 anchors and orients the ookinete invasive apparatus towards the midgut PM and promotes the efficient parasite infection in the mosquito.


Assuntos
Anopheles , Malária Falciparum , Malária , Plasmodium , Animais , Camundongos , Coelhos , Humanos , Tubulina (Proteína)/metabolismo , Plasmodium falciparum , Mosquitos Vetores , Malária Falciparum/parasitologia , Anopheles/parasitologia
11.
PLoS Pathog ; 19(1): e1010842, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656895

RESUMO

As a major insect vector of multiple arboviruses, Aedes aegypti poses a significant global health and economic burden. A number of genetic engineering tools have been exploited to understand its biology with the goal of reducing its impact. For example, current tools have focused on knocking-down RNA transcripts, inducing loss-of-function mutations, or expressing exogenous DNA. However, methods for transactivating endogenous genes have not been developed. To fill this void, here we developed a CRISPR activation (CRISPRa) system in Ae. aegypti to transactivate target gene expression. Gene expression is activated through pairing a catalytically-inactive ('dead') Cas9 (dCas9) with a highly-active tripartite activator, VP64-p65-Rta (VPR) and synthetic guide RNA (sgRNA) complementary to a user defined target-gene promoter region. As a proof of concept, we demonstrate that engineered Ae. aegypti mosquitoes harboring a binary CRISPRa system can be used to effectively overexpress two developmental genes, even-skipped (eve) and hedgehog (hh), resulting in observable morphological phenotypes. We also used this system to overexpress the positive transcriptional regulator of the Toll immune pathway known as AaRel1, which resulted in a significant suppression of dengue virus serotype 2 (DENV2) titers in the mosquito. This system provides a versatile tool for research pathways not previously possible in Ae. aegypti, such as programmed overexpression of endogenous genes, and may aid in gene characterization studies and the development of innovative vector control tools.


Assuntos
Aedes , Animais , Humanos , Proteínas Hedgehog/metabolismo , Mosquitos Vetores/genética , RNA/metabolismo , Ativação Transcricional , Sistemas CRISPR-Cas
12.
PLoS Negl Trop Dis ; 16(12): e0010965, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36455055

RESUMO

BACKGROUND: Endogenous circadian rhythms result from genetically-encoded molecular clocks, whose components and downstream output factors cooperate to generate cyclic changes in activity. Mating is an important activity of mosquitoes, however, the key aspects of mating rhythm patterns and their regulatory mechanisms in two vector mosquito species, Aedes albopictus and Culex quinquefasciatus, remain unclear. METHODOLOGY/PRINCIPAL FINDINGS: We determined and compared the diel mating activity rhythms of these two mosquito species and discovered that Ae. albopictus had mating peaks in the light/dark transition periods (ZT0-3 and ZT9-12), while Cx. quinquefasciatus only had a mating peak at ZT12-15. Knockouts of the clock (clk) orthologous genes (Aalclk and Cxqclk) resulted in phase delay or phase reversal of the mating peaks in Ae. albopictus and Cx. quinquefasciatus, respectively. In addition, the temporal expression pattern of the desaturase orthologous genes, desat1, in both mosquito species was also different in respective wild-type strains and showed phase changes similar to the mating rhythms in clk mutant strains. Inhibition of desat1 expression resulted in decreased mating activity in male mosquitoes of both species but not females. In addition, desat1 regulated cuticular hydrocarbons' synthesis in both species. Silencing desat1 in male Ae. albopictus resulted in decreases of nonadecane and tricosane, which promoted mating, with concomitant increases of heptacosane, which inhibited mating. Silencing desat1 in male Cx. quinquefasciatus also resulted in decreases of tricosane, which promoted mating. CONCLUSIONS/SIGNIFICANCE: These results suggest that Aalclk and Cxqclk have significant roles in the mating activity rhythms in both Ae. albopictus and Cx. quinquefasciatus by regulating the temporal expression of the desat1 gene under LD cycles, which affects sex pheromone synthesis and mating. This work provides insights into the molecular regulatory mechanism of distinct mating rhythm of Ae. albopictus and Cx. quinquefasciatus and may provide a basis for the control of these two important vector mosquitoes.


Assuntos
Aedes , Culex , Animais , Masculino , Culex/genética , Aedes/genética , Mosquitos Vetores/genética , Reprodução/genética
13.
PLoS Negl Trop Dis ; 16(9): e0010701, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36074773

RESUMO

BACKGROUND: The surveillance of vector mosquitoes is essential for prevention and control of mosquito-borne diseases. In this study, we developed an internet-based vector mosquito monitor, MS-300, and evaluated its efficiency for the capture of the important vector mosquitoes, Aedes albopictus and Culex quinquefasciatus, in laboratory and field trials. METHODOLOGY/PRINCIPAL FINDINGS: The linear sizes of adult Ae. albopictus and Cx. quinquefasciatus were measured and an infrared window was designed based on these data. A device to specifically attract these two species and automatically transmit the number of captured mosquitoes to the internet was developed. The efficiency of the device in capturing the two species was tested in laboratory, semi-field and open field trials. The efficiency results for MS-300 for catching and identifying Ae. albopictus in laboratory mosquito-net cages were 98.5% and 99.3%, and 95.8% and 98.6%, respectively, for Cx. quinquefasciatus. In a wire-gauze screened house in semi-field trials, the efficiencies of MS-300 baited with a lure in catching Ae. albopictus and Cx. quinquefasciatus were 54.2% and 51.3%, respectively, which were significantly higher than 4% and 4.2% without the lure. The real-time monitoring data revealed two daily activity peaks for Ae. albopictus (8:00-10:00 and 17:00-19:00), and one peak for Cx. quinquefasciatus (20:00-24:00). During a 98-day surveillance trial in the field, totals of 1,118 Ae. albopictus and 2,302 Cx. quinquefasciatus were captured by MS-300. There is a close correlation between the number of captured mosquitoes and the temperature in the field, and a positive correlation in the species composition of the captured samples among the mosquitoes using MS-300, BioGents Sentinel traps and human landing catches. CONCLUSIONS/SIGNIFICANCE: The data support the conclusion that MS-300 can specifically and efficiently capture Ae. albopictus and Cx. quinquefasciatus, and monitor their density automatically in real-time. Therefore, MS-300 has potential for use as a surveillance tool for prevention and control of vector mosquitoes.


Assuntos
Aedes , Culex , Animais , Vetores de Doenças , Humanos , Mosquitos Vetores
14.
PLoS Genet ; 18(6): e1010280, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35737710

RESUMO

Aedes albopictus is one of the most invasive insect species in the world and an effective vector for many important arboviruses. We reported previously that Ae. albopictus Nix (AalNix) is the male-determining factor of this species. However, whether AalNix alone is sufficient to initiate male development is unknown. Transgenic lines that express each of the three AalNix isoforms from the native promoter were obtained using piggyBac transformation. We verified the stable expression of AalNix isoforms in the transgenic lines and confirm that one isoform, AalNix3&4, is sufficient to convert females into fertile males (pseudo-males) that are indistinguishable from wild-type males. We also established a stable sex-converted female mosquito strain, AalNix3&4-♂4-pseudo-male. The pseudo-male mosquitoes can fly and mate normally with wild-type female, although their mating competitiveness is lower than wild-type. This work further clarifies the role of AalNix in the sex determination pathway and will facilitate the development of Ae. albopictus control strategies that rely on male-only releases such as SIT and sex-ratio distortion.


Assuntos
Aedes , Aedes/genética , Aedes/metabolismo , Animais , Animais Geneticamente Modificados , Feminino , Espécies Introduzidas , Masculino , Mosquitos Vetores/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reprodução
16.
PNAS Nexus ; 1(2): pgac041, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35601361

RESUMO

Aedes albopictus is the most invasive mosquito in the world and often displaces Ae. aegypti in regions where their populations overlap. Interspecific mating has been proposed as a possible cause for this displacement, but whether this applies across the range of their sympatry remains unclear. Aedes albopictus and Ae. aegypti collected from allopatric and sympatric areas in China were allowed to interact in cage experiments with different crosses and sex-choices. The results confirm that asymmetric interspecific mating occurs in these populations with matings between allopatric Ae. albopictus males and Ae. aegypti females being significantly higher (55.2%) than those between Ae. aegypti males and Ae. albopictus females (27.0%), and sympatric mosquitoes showed a similar but lower frequency bias, 25.7% versus 6.2%, respectively. The cross-mated females can mate second time (remate) with the respective conspecific males and the 66.7% remating success of female Ae. albopictus was significantly higher than the 9.3% of Ae. aegypti females. Furthermore, 17.8% of the matings of Ae. albopictus males exposed to mixed pools of Ae. albopictus and Ae. aegypti females and 9.3% of the matings of Ae. aegypti males with mixed Ae. aegypti and Ae. albopictus females were interspecific. The difference in the length of clasper between male Ae. albopictus (0.524 mm) and Ae. aegypti (0.409 mm) may be correlated with corresponding mates. We conclude that stronger Ae. albopictus male interspecific mating and more avid female intraspecific remating result in a satyr effect and contribute to competitive displacement of Ae. aegypti as allopatric Ae. albopictus invade during range expansion.

17.
Genetics ; 221(2)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35389492

RESUMO

CRISPR/Cas9 technologies are important tools for the development of gene-drive systems to modify mosquito vector populations to control the transmission of pathogens that cause diseases such as malaria. However, one of the challenges for current Cas9-based drive systems is their ability to produce drive-resistant alleles resulting from insertions and deletions (indels) caused principally by nonhomologous end-joining following chromosome cleavage. Rapid increases in the frequency of such alleles may impair gene-drive dynamics. We explored the generation of indels in the germline and somatic cells in female gene-drive lineages using a series of selective crosses between a gene-drive line, AgNosCd-1, and wild-type mosquitoes. We find that potential drive-resistant mutant alleles are generated largely during embryonic development, most likely caused by deposition of the Cas9 endonuclease and guide RNAs in oocytes and resulting embryos by homozygous and hemizygous gene-drive mothers.


Assuntos
Anopheles , Malária , Alelos , Animais , Anopheles/genética , Sistemas CRISPR-Cas , Feminino , Malária/prevenção & controle , Herança Materna , Mosquitos Vetores/genética
18.
Front Bioeng Biotechnol ; 10: 826727, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35127663

RESUMO

Progress in gene-drive research has stimulated discussion and debate on ethical issues including community engagement and consent, policy and governance, and decision-making involved in development and deployment. Many organizations, academic institutions, foundations, and individual professionals have contributed to ensuring that these issues are considered prior to the application of gene-drive technology. Central topics include co-development of the technology with local stakeholders and communities and reducing asymmetry between developers and end-users. Important questions include with whom to conduct engagement and how to define community acceptance, develop capacity-building activities, and regulate this technology. Experts, academics, and funders have suggested that global frameworks, standards, and guidelines be developed to direct research in answering these important questions. Additionally, it has been suggested that ethical principles or commitments be established to further guide research practices. The challenging and interesting contradiction that we explore here is that the vast majority of these conversations transpire with little or no input from potential end-users or stakeholders who, we contend, should ultimately determine the fate of the technology in their communities. The question arises, whose concerns regarding marginalization, disempowerment, and inequity should be included in discussions and decisions concerning how inequities are perceived and how they may be addressed? At what stage will true co-development occur and how will opinions, perspectives and knowledge held by low-income country stakeholders be applied in determining answers to the questions regarding the ethics being debated on the academic stage? Our opinion is that the time is now.

19.
Insect Biochem Mol Biol ; 142: 103720, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34999199

RESUMO

Insect ommochrome biosynthesis pathways metabolize tryptophan to generate eye-color pigments and wild-type alleles of pathway genes are useful phenotypic markers in transgenesis studies. Pleiotropic effects of mutations in some genes exert a load on both survival and reproductive success in blood-feeding species. Here, we investigated the challenges imposed on mosquitoes by the increase of tryptophan metabolites resulting from blood meal digestion and the impact of disruptions of the ommochrome biosynthesis pathway. Female mosquitoes with spontaneous and induced mutations in the orthologs of the genes encoding kynurenine hydroxylase in Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus exhibited impaired survival and reproductive phenotypes that varied in type and severity among the species. A compromised midgut permeability barrier function was also observed in An. stephensi. Surprisingly, mutant mosquitoes displayed an increase in microbiota compared to controls that was not accompanied by a general induction of immune genes. Antibiotic treatment rescued some deleterious traits implicating a role for the kynurenine pathway (KP) in midgut homeostasis. Supplemental xanthurenic acid, a KP end-product, rescued lethality and limited microbiota proliferation in Ae. aegypti. These data implicate the KP in the regulation of the host/microbiota interface. These pleiotropic effects on mosquito physiology are important in the development of genetic strategies targeting vector mosquitoes.


Assuntos
Aedes , Culex , Aedes/metabolismo , Animais , Feminino , Homeostase , Cinurenina/metabolismo , Cinurenina/farmacologia , Mosquitos Vetores , Triptofano/metabolismo
20.
Biomolecules ; 13(1)2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36671401

RESUMO

Mosquito transgenesis and gene-drive technologies provide the basis for developing promising new tools for vector-borne disease prevention by either suppressing wild mosquito populations or reducing their capacity from transmitting pathogens. Many studies of the regulatory DNA and promoters of genes with robust sex-, tissue- and stage-specific expression profiles have supported the development of new tools and strategies that could bring mosquito-borne diseases under control. Although the list of regulatory elements available is significant, only a limited set of those can reliably drive spatial-temporal expression. Here, we review the advances in our ability to express beneficial and other genes in mosquitoes, and highlight the information needed for the development of new mosquito-control and anti-disease strategies.


Assuntos
Engenharia Genética , Doenças Transmitidas por Vetores , Animais , Controle de Mosquitos , Técnicas de Transferência de Genes , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...